A generalized formula for inertial lift on a sphere in microchannels.
نویسندگان
چکیده
Inertial microfluidics has been widely used in high-throughput manipulation of particles and cells by hydrodynamic forces, without the aid of externally applied fields. The performance of inertial microfluidic devices largely relies on precise prediction of particle trajectories that are determined by inertial lift acting on particles. The only way to accurately obtain lift forces is by direct numerical simulation (DNS); however, it is burdensome when applied to practical microchannels with complex geometries. Here, we propose a fitting formula for inertial lift on a sphere drawn from DNS data obtained in straight channels. The formula consists of four terms that represent the shear-gradient-induced lift, the wall-induced lift, the slip-shear lift, and the correction of the shear-gradient-induced lift, respectively. Notably, as a function of the parameters of a local flow field, it possesses good adaptability to complex channel geometries. This generalized formula is further implemented in the Lagrangian particle tracking method to realize fast prediction of particle trajectories in two types of widely used microchannels: a long serpentine and a double spiral microchannel, demonstrating its ability to efficiently design and optimize inertial microfluidic devices.
منابع مشابه
The Magnitude of Lift Forces Acting on Drops and Bubbles in Liquids Flowing Inside Microchannels
The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters. Abstract Hydrodynamic lift forces offer a convenient way to manipulate particles in microfluidic applications, but there is little quantitative information on how non-inertial lift mechanisms act and compete with each other in the confined space of microfluidic channels. ...
متن کاملFundamentals of inertial focusing in microchannels.
Inertial microfluidics has been attracting considerable interest in recent years due to immensely promising applications in cell biology. Despite the intense attention, the primary focus has been on development of inertial microfluidic devices with less emphasis paid to elucidation of the inertial focusing mechanics. The incomplete understanding, and sometimes confusing experimental results tha...
متن کاملThe magnitude of lift forces acting on drops and bubbles in liquids flowing inside microchannels 3
Hydrodynamic lift forces offer a convenient way to manipulate particles in microfluidic applications, but there is little quantitative information on how non-inertial lift mechanisms act and compete with each other in the confined space of microfluidic channels. This paper reports measurements of lift forces on nearly spherical drops and bubbles, with diameters from one quarter to one half of t...
متن کاملEnhanced particle filtration in straight microchannels using shear-modulated inertial migration
In this work, we introduce a novel method for enhanced particle filtration using shear-modulated inertial migration in straight microchannels. Depending on their size, inertial lift causes particles to migrate toward microchannel walls. Using microchannels with high aspect ratio cross sections, the fluidic shear can be modulated, resulting in preferential equilibration of particles along the lo...
متن کاملLift on a Moving Sphere Near a Plane Wall in a Second Order Fluid
In this paper we examine the lift on a sphere moving very close to an infinite plane wall in a second-order fluid. The sphere is allowed to both translate and rotate along the plane. We focus on the limit when the sphere touches the wall. We found that due to the normal stress effect the flow gives rise to a positive elastic lift force on the sphere when gap between the sphere and the wall is s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Lab on a chip
دوره 16 5 شماره
صفحات -
تاریخ انتشار 2016